ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Article considers incorporation of AI into nuclear power plant operations
The potential application of artificial intelligence to the operation of nuclear power plants is explored in an article published in late December in the Washington Examiner. The article, written by energy and environment reporter Callie Patteson, presents the views of a number of experts, including Yavuz Arik, a strategic energy consultant.
Chi H. Kang, Dale B. Lancaster
Nuclear Technology | Volume 125 | Number 3 | March 1999 | Pages 292-304
Technical Paper | Fission Reactors | doi.org/10.13182/NT99-A2948
Articles are hosted by Taylor and Francis Online.
A flat, uniform axial burnup assumption, preferred for its computational simplicity, does not always conservatively estimate the pressurized water reactor spent-fuel-cask multiplication factors. Rather, the reactivity effect of the significantly underburned fuel ends, usually referred to as the "end effect," can be properly treated by explicit modeling of the axial burnup distribution based on limiting axial burnup profiles. An alternative approach to this laborious explicit modeling is to augment the multiplication factor determined from an axially uniform calculation by an appropriate keff bias. Based on the observation that the end effect increases with a decrease in the cask size, conservative keff bias curves are determined by applying the limiting axial burnup profiles and assuming a single-assembly cask configuration. However, because of their conservative nature, the keff bias curves are not recommended unless there is a large reactivity margin in the particular cask of interest.The horizontal burnup distribution poses less reactivity concern simply because the limiting arrangement in a cask is an unlikely event. The possibility of two or more assemblies with low burnup zones placed inward and next to each other is small, while the underburned fuel ends will surely be next to each other. Regardless, the reactivity effect of the horizontal burnup distribution is bounded by assuming a conservative horizontal burnup gradient within individual assemblies and the most reactive arrangement of multiple assemblies in spent nuclear fuel casks. This approach can have a significant effect on small cask designs where the orientation of fuel assemblies has a substantial influence on the calculated multiplication factor because of the large radial neutron leakage.