ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE on track to deliver high-burnup SNF to Idaho by 2027
The Department of Energy said it anticipated delivering a research cask of high-burnup spent nuclear fuel from Dominion Energy’s North Anna nuclear power plant in Virginia to Idaho National Laboratory by fall 2027. The planned shipment is part of the High Burnup Dry Storage Research Project being conducted by the DOE with the Electric Power Research Institute.
As preparations continue, the DOE said it is working closely with federal agencies as well as tribal and state governments along potential transportation routes to ensure safety, transparency, and readiness every step of the way.
Watch the DOE’s latest video outlining the project here.
Dale B. Lancaster, Emilio Fuentes, Chi H. Kang, Meraj Rahimi
Nuclear Technology | Volume 125 | Number 3 | March 1999 | Pages 255-270
Technical Paper | Fission Reactors | doi.org/10.13182/NT99-A2946
Articles are hosted by Taylor and Francis Online.
A conservative methodology is presented that would allow taking credit for burnup in the criticality safety analysis of spent nuclear fuel (SNF) packages. The method is based on the assumption that the isotopic concentration in the SNF and cross sections of each isotope for which credit is taken must be supported by validation experiments. The method allows credit for the changes in the 234U, 235U, 236U, 238U, 238Pu, 239Pu, 240Pu, 241Pu, 242Pu, and 241Am concentration with burnup. No credit for fission product neutron absorbers is taken. The methodology consists of five major steps:1. Validate a computer code system to calculate isotopic concentrations of SNF created during burnup in the reactor core and subsequent decay. Chemical assay benchmarks are used for this purpose, in conjunction with a method for assessing the calculational bias and uncertainty for each isotope.2. Validate a computer code system to predict the subcritical multiplication factor keff of an SNF package by use of UO2 and UO2/PuO2 critical experiments. The method uses an upper safety limit on keff (which can be a function of trending parameters) to ensure that the calculated keff when increased for the bias and uncertainty is <0.95.3. Establish conditions for the SNF (depletion analysis) and package (criticality analysis) that bound keff. Bounding axial and horizontal profiles must be established to ensure that the "end effect" and "horizontal effect" are accounted for conservatively.4. Use the validated codes and bounding conditions to generate package-loading criteria (burnup credit loading curves). Burnup credit loading curves show the minimum burnup required for a given initial enrichment.5. Verify by measurement that SNF assemblies meet the package-loading criteria, and confirm proper assembly selection prior to loading.