ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Article considers incorporation of AI into nuclear power plant operations
The potential application of artificial intelligence to the operation of nuclear power plants is explored in an article published in late December in the Washington Examiner. The article, written by energy and environment reporter Callie Patteson, presents the views of a number of experts, including Yavuz Arik, a strategic energy consultant.
Mohamed Tahar Sissaoui, Guy Marleau, Daniel Rozon
Nuclear Technology | Volume 125 | Number 2 | February 1999 | Pages 197-212
Technical Paper | Fission Reactors | doi.org/10.13182/NT99-A2942
Articles are hosted by Taylor and Francis Online.
A new model has been developed to evaluate the variation of few-group cross sections with local parameters and the history of the reactor. This model allows us to generate a coherent set of nuclear cross sections for a CANDU cell. The history dependence of the nuclide concentrations is taken into account by creating a pseudo-isotope, which includes actinides whose concentrations are strongly affected by local parameter history. Simple physical considerations lead us to determine the law of variation of the cross sections as a function of these parameters. They permit the computation of the cross sections for each state of the reactor core, using a unique library for each type of cell, which contains the nuclear cross sections computed at nominal conditions and feedback coefficients. To validate the feedback model, several operational situations were tested, and the results are compared to those given by a transport calculation using the DRAGON cell code.