ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Lothar Wolf, Ashok Rastogi, Dag Wennerberg, Thomas Cron, Edgar Hansjosten
Nuclear Technology | Volume 125 | Number 2 | February 1999 | Pages 136-154
Technical Paper | Reactor Safety | doi.org/10.13182/NT99-A2938
Articles are hosted by Taylor and Francis Online.
The contribution by the Heiss Dampf Reaktor Safety Program, phase III, to the German containment hydrogen research activities were twofold:1. to confirm the findings of the experiments in the Battelle Model Containment (BMC) in volumes of typically ~100 m3 by similar ones at a larger scale with a total volume of 500 m32. to broaden the database for assessing the emerging modeling strategy for larger scales toward more realistic subcompartment sizes.To supplement the results obtained in the BMC in a proper, controlled manner for additional model development and computer code verification, a total of seven experiments was performed, and the following positions for hydrogen ignition were examined:test group E12.1: hydrogen deflagration in a vertically oriented subcompartmenttest group E12.2: ignition close to the venttest group E12.3: accelerated jet ignition in a horizontal direction.The maximum peak pressure occurred for E12.3.3 at 1.8 bars under typical accelerated jet ignition conditions for 12 vol% initial H2 concentration. Because of larger vent openings, maximum peak pressures were generally lower than observed in BMC tests, whereas maximum temperatures were substantially higher, reaching 1000°C and above. A few comparisons between data and code results from CONTAIN, RALOC-HYDCOM, and CONTAIN/BASSIM computations are shown, indicating the need for further improvements.