ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Article considers incorporation of AI into nuclear power plant operations
The potential application of artificial intelligence to the operation of nuclear power plants is explored in an article published in late December in the Washington Examiner. The article, written by energy and environment reporter Callie Patteson, presents the views of a number of experts, including Yavuz Arik, a strategic energy consultant.
Lothar Wolf, Helmut Holzbauer, Thomas Cron
Nuclear Technology | Volume 125 | Number 2 | February 1999 | Pages 119-135
Technical Paper | Reactor Safety | doi.org/10.13182/NT99-A2937
Articles are hosted by Taylor and Francis Online.
Whereas all previous presentations on the Heiss Dampf Reaktor hydrogen distribution experiments E11, concerning data versus code predictions, concentrated on the blind posttest efforts, this presentation focuses on the results of the comparisons with parametric, best-estimate, open posttest predictions for experiments E11.2 and E11.4 with the containment analysis computer codes RALOC, WAVCO, CONTAIN, MELCOR, and GOTHIC.The results of these comparisons show the following after correcting a number of deficient input parameters previously supplied by the Kernforschungszentrum Karlsruhe/Heiss Dampf Reaktor Project as specifications):E11.4:1. Standard lumped-parameter codes are able to predict H2 mixing and distribution phenomena when H2 is injected into a well-mixed atmosphere in lower zones of the containment with excellent agreement in most of the important quantities.2. A few discrepancies remain, dependent on the codes' modeling methodologies and the impact of incorrect specifications.E11.2:1. Accounting for the corrections substantially improves the agreements compared to the blind posttest predictions.2. However, concerning the predictions of the thermal stratification pattern and the H2 distribution, more or less large discrepancies still remain.3. Parametric changes of input parameters lead to improvement of agreement in some quantities but at the same time worsen others.4. "Innovative" concepts of changing certain input parameters beyond current practice improve the quality of the predicted H2 concentrations.