ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
James R. Powell, Hans Ludewig, Michael Todosow, Morris Reich
Nuclear Technology | Volume 125 | Number 1 | January 1999 | Pages 104-115
Technical Paper | Accelerators | doi.org/10.13182/NT99-A2936
Articles are hosted by Taylor and Francis Online.
Two new accelerator target and neutron filter concepts are proposed for boron neutron capture therapy (BNCT) to enable production efficiencies for epithermal neutrons (i.e., neutrons leaving the treatment port and neutrons generated in the target) of ~5 to 10%. These efficiencies are much greater than in previous designs and allow BNCT facilities to use near-term, low-current (~5 mA) proton accelerators. Two target/filter designs are described and their neutronic performance analyzed. In NIFTI-1, epithermal neutrons (maximum energy of ~100 keV) are generated by a proton beam that is maintained slightly above the 1.889-MeV threshold for the 7Li(p,n)7Be reaction. As the proton beam passes through the DISCOS target, which consists of a sequential series (e.g., total of 80) of very thin (several microns) liquid-lithium films on ultrathin rotating beryllium metal foils, the protons are reaccelerated by an applied direct-current field between the foils. This reacceleration enables a high total neutron yield, ~10-4 neutrons/proton. The NIFTI-1 neutron filter, a highly scattering cross-section layer of iron-magnesium, located between the target and the treatment port, impedes neutron transmission for energies >24 keV, but it has a deep window in the scattering cross section at 24 keV. Scattering in the filter and an accompanying thin (~1 cm) hydrogenous neutron "downshifter" yield a neutron output beam with an average energy of ~10 to 20 keV. In the NIFTI-2 design, a single thick lithium target is used, with a proton beam energy (~2.5 MeV) well above the (p,n) threshold. Although the neutron yield from the target is high, ~10-4 neutrons/proton, their energy is much greater (maximum of ~800 keV) than in NIFTI-1. The high-energy neutrons inelastically scatter in a fluorine-containing material (BeF2/PbF2) placed between the target and the NIFTI filter. The neutron beam out of the treatment port has an average energy of ~30 keV. The effectiveness of the two designs for BNCT treatment is analyzed. Both exhibit good penetration in tissue (advantage depth) and tumor/healthy tissue dose (relative biological effectiveness advantage ratio) performance.