ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Article considers incorporation of AI into nuclear power plant operations
The potential application of artificial intelligence to the operation of nuclear power plants is explored in an article published in late December in the Washington Examiner. The article, written by energy and environment reporter Callie Patteson, presents the views of a number of experts, including Yavuz Arik, a strategic energy consultant.
Michael C. Baker, Riccardo Bonazza
Nuclear Technology | Volume 125 | Number 1 | January 1999 | Pages 40-51
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT99-A2931
Articles are hosted by Taylor and Francis Online.
An experimental apparatus for investigating the injection of nitrogen gas and water into the base of a steel tank containing molten tin has been developed. A first set of experiments based on only gas injection has been used to develop a diagnostic technique using continuous high-energy X rays and digital imaging to observe the mixing process and to measure local and average void fractions in the test section as a function of time and space. This unique application of real-time, high-energy, X-ray imaging has been used to generate two-dimensional mappings of the chordal-average void fraction with spatial resolution corresponding to a 0.43-mm2 cross-sectional area perpendicular to the X-ray path and time resolutions of <5 ms. Void fraction measurements with superficial gas injection velocities from 0.07 to 0.14 m/s into a 0.08-m-deep pool of 683 K molten tin indicate that the time and spatial average integral void fraction at these gas injection rates is relatively constant, in the range from 0.26 to 0.31. Similar injections into pools of 0.14- and 0.15-m depths have also exhibited relatively constant average integral void fractions in the range from 0.18 to 0.26. These values are in good agreement with past integral experimental measurements in mercury, Wood's metal, and molten steel.