ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Article considers incorporation of AI into nuclear power plant operations
The potential application of artificial intelligence to the operation of nuclear power plants is explored in an article published in late December in the Washington Examiner. The article, written by energy and environment reporter Callie Patteson, presents the views of a number of experts, including Yavuz Arik, a strategic energy consultant.
Jungsook Clara Wren, Will Long, Chris J. Moore, Keith R. Weaver
Nuclear Technology | Volume 125 | Number 1 | January 1999 | Pages 13-27
Technical Paper | Reactor Safety | doi.org/10.13182/NT99-A2929
Articles are hosted by Taylor and Francis Online.
The performance of charcoal filters for removing radioiodine from airstreams has been studied under conditions associated with routine reactor operations, as well as under conditions expected following an accident. These studies have led to the development of a physical model that can predict the time-dependent behavior of iodine release from triethylenediamine (TEDA)-impregnated charcoal filters under postaccident conditions. The charcoal filter model and the experimental studies performed to obtain appropriate values for the parameters used in the model are described.The model is a one-dimensional mass balance equation that includes convection, diffusion, and adsorption-desorption processes. The adsorption-desorption kinetics for CH3I on TEDA-impregnated charcoal is based on a two-step process: physical adsorption on the charcoal surface followed by chemisorption on TEDA impregnants, the rate of this chemisorption depending on the concentration of the physically adsorbed CH3I. Experiments were performed to determine the temperature and relative humidity dependences of the parameters used in the model, i.e., the adsorption and desorption rate constants and adsorption capacities. For a given charcoal, it was assumed that the rate constants depend only on temperature, whereas the adsorption capacities depend only on relative humidity. The observed rate constants for the physical and chemical adsorption and desorption processes all show Arrhenius temperature dependences. The observed dependence of adsorption capacity on relative humidity is consistent with the assumption that the adsorption sites are reduced as a result of capillary condensation. The full CH3I breakthrough curves, calculated using the model, reproduced the experimental data very well, supporting the assumption of a two-step adsorption-desorption mechanism. Some of the simulation results are also presented.