ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
DOE announces awards for three university nuclear education outreach programs
The Department of Energy’s Office of Nuclear Energy has announced more than $590,000 in funding awards to help three universities enhance their outreach in nuclear energy education. The awards, which are part of the DOE Nuclear Energy University Program (NEUP) University Reactor Sharing and Outreach Program, are primarily designed to provide students in K-12, vocational schools, and colleges with access to university research reactors in order to increase awareness of nuclear science, engineering, and technology and to foster early interest in nuclear energy-related careers.
Jungsook Clara Wren, Will Long, Chris J. Moore, Keith R. Weaver
Nuclear Technology | Volume 125 | Number 1 | January 1999 | Pages 13-27
Technical Paper | Reactor Safety | doi.org/10.13182/NT99-A2929
Articles are hosted by Taylor and Francis Online.
The performance of charcoal filters for removing radioiodine from airstreams has been studied under conditions associated with routine reactor operations, as well as under conditions expected following an accident. These studies have led to the development of a physical model that can predict the time-dependent behavior of iodine release from triethylenediamine (TEDA)-impregnated charcoal filters under postaccident conditions. The charcoal filter model and the experimental studies performed to obtain appropriate values for the parameters used in the model are described.The model is a one-dimensional mass balance equation that includes convection, diffusion, and adsorption-desorption processes. The adsorption-desorption kinetics for CH3I on TEDA-impregnated charcoal is based on a two-step process: physical adsorption on the charcoal surface followed by chemisorption on TEDA impregnants, the rate of this chemisorption depending on the concentration of the physically adsorbed CH3I. Experiments were performed to determine the temperature and relative humidity dependences of the parameters used in the model, i.e., the adsorption and desorption rate constants and adsorption capacities. For a given charcoal, it was assumed that the rate constants depend only on temperature, whereas the adsorption capacities depend only on relative humidity. The observed rate constants for the physical and chemical adsorption and desorption processes all show Arrhenius temperature dependences. The observed dependence of adsorption capacity on relative humidity is consistent with the assumption that the adsorption sites are reduced as a result of capillary condensation. The full CH3I breakthrough curves, calculated using the model, reproduced the experimental data very well, supporting the assumption of a two-step adsorption-desorption mechanism. Some of the simulation results are also presented.