ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Article considers incorporation of AI into nuclear power plant operations
The potential application of artificial intelligence to the operation of nuclear power plants is explored in an article published in late December in the Washington Examiner. The article, written by energy and environment reporter Callie Patteson, presents the views of a number of experts, including Yavuz Arik, a strategic energy consultant.
Martin J. R. Pierre, Hugues W. Bonin
Nuclear Technology | Volume 125 | Number 1 | January 1999 | Pages 1-12
Technical Paper | Fission Reactors | doi.org/10.13182/NT99-A2928
Articles are hosted by Taylor and Francis Online.
The availability of the Monte Carlo-based code MCNP 4A has made possible the simulation of the low-enriched uranium (LEU)-fueled SLOWPOKE-2 reactor using a probabilistic approach. The reactor core and its surrounding pool can be modeled in three dimensions with numerous details included in the representation. Significant improvement from previous modeling attempts was obtained with the MCNP 4A simulation, with the discrepancy between the calculated and experimental values of the excess reactivity at 20°C reduced to only 0.2 mk. The analysis suggests the error of the MCNP 4A-calculated excess reactivity as between 1 and 2 mk.The SLOWPOKE-2 reactor was then simulated with its single control rod at various degrees of insertion in the core: The reactivity worth of the rod was calculated as 7.85 mk, only 2.4 mk above the measured value. MCNP was then used for predicting the temperature effects on the excess reactivity. Although the inherent safety of the SLOWPOKE-2 reactor was confirmed in the simulation, the temperature dependence of the excess reactivity could not however be accurately predicted, due for the most part to the lack of appropriate cross-section libraries available at the time of this work. The potential of MCNP 4A is nevertheless clearly demonstrated for the simulation of the LEU-fueled SLOWPOKE-2 reactor, once the missing cross sections become available for the low temperatures at which the reactor operates.