ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Chin-Jen Chang, Samim Anghaie
Nuclear Technology | Volume 124 | Number 3 | December 1998 | Pages 265-275
Technical Paper | Radiation Measurements and Instrumentation | doi.org/10.13182/NT98-A2925
Articles are hosted by Taylor and Francis Online.
A high-definition gamma scanning method for the near-field measurement of radionuclide inventories in a large nuclear waste barrel is presented. The method introduced is especially accurate for radionuclides with multiple gamma energy peaks. Multiple detectors positioned as closely as possible to the waste barrel are used to measure the radiation field emanating from the distributed radiation sources. The total source activity is reconstructed by using the conjugate gradient with nonnegative constraint method or the maximum likelihood expectation maximum method based on measured detector responses. The maximum measurement error bond and its associated confidence level for the developed gamma scanning system are determined statistically by performing a large number of numerical experiments that take into consideration the counting statistics, the nonuniformity of source distribution, and the heterogeneous density of the self-absorbing medium. The accuracy and reliability of the system are verified through a series of real measurements with randomly distributed 192Ir sources in a 208-litre waste barrel. The results of these measurements are in full agreement with the estimated error and the confidence level that are predicted by the numerical simulation.