ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Article considers incorporation of AI into nuclear power plant operations
The potential application of artificial intelligence to the operation of nuclear power plants is explored in an article published in late December in the Washington Examiner. The article, written by energy and environment reporter Callie Patteson, presents the views of a number of experts, including Yavuz Arik, a strategic energy consultant.
Kuan-Chywan Tu, Chien-Hsiung Lee, Shih-Jen Wang, Bau-Shei Pei
Nuclear Technology | Volume 124 | Number 3 | December 1998 | Pages 243-254
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT98-A2923
Articles are hosted by Taylor and Francis Online.
A new mechanistic critical heat flux (CHF) model has been developed for flow boiling CHF data of low-pressure (i.e., 0.2 to 4.0 MPa), low-mass-flux (i.e., 189 to 789 kg/m2s), and high-quality conditions. In general, CHF at these conditions associates with the flow regime of annular flow. This model assumes that the Helmholtz instability at the liquid-vapor interface of annular flow triggers the onset of CHF. CHF is the energy required to dryout the liquid film isolated by flow instability. With five empirical constants to properly correlate the liquid-vapor configurations of annular flow in the steam-water systems, the model successfully achieves a mean deviation error of 10.2% over a CHF data set consisting of 733 CHF data. The prediction of this model is more accurate than those of Biasi and Bowring correlations at the aforementioned low-pressure and low-mass-flux conditions.