ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Seconds Matter: Rethinking Nuclear Facility Security for the Modern Threat Landscape
In today’s rapidly evolving threat environment, nuclear facilities must prioritize speed and precision in their security responses—because in critical moments, every second counts. An early warning system serves as a vital layer of defense, enabling real-time detection of potential intrusions or anomalies before they escalate into full-blown incidents. By providing immediate alerts and actionable intelligence, these systems empower security personnel to respond decisively, minimizing risk to infrastructure, personnel, and the public. The ability to anticipate and intercept threats at the earliest possible stage not only enhances operational resilience but also reinforces public trust in the safety of nuclear operations. Investing in such proactive technologies is no longer optional—it’s essential for modern nuclear security.
Galina Chabratova, Lars Leistam
Nuclear Technology | Volume 124 | Number 2 | November 1998 | Pages 183-191
Technical Paper | Accelerators | doi.org/10.13182/NT98-A2918
Articles are hosted by Taylor and Francis Online.
Estimates are presented of the radiation environment for POINT2 of the Large Hadron Collider, where the ALICE detector is to be located. The radiation environment is studied in terms of two points of accidental beam losses. The dose level in the region of the counting rooms is lower than the recommended CERN limit of 50 mSv. The radiation level behind the access shielding at the air-duct chicane is not higher than 10 mSv; this area is also appropriated for use as a public area. A more complicated situation is in the machine bypass region. The dose level in the tunnel is a few hundred millisieverts, and a decrease of this level could be achieved by increasing the thickness of the wall or the beam pipe shielding.