ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Do Heon Kim, Jong Kyung Kim
Nuclear Technology | Volume 124 | Number 2 | November 1998 | Pages 175-182
Technical Paper | Radiation Biology and Medicine | doi.org/10.13182/NT98-A2917
Articles are hosted by Taylor and Francis Online.
A subcritical multiplying assembly (SMA) was employed to improve the relatively low neutron fluxes of a 252Cf source, and the feasibility of using it as the neutron source for boron neutron capture therapy was explored. The Monte Carlo code MCNP was used to evaluate the effective multiplication factor keff of the entire system, the intensities and percentages of the epithermal neutron flux at the patient-end surface of the beam, and dosimetric properties of the beam in the elliptical brain phantom. The neutron beam with the SMA provides an epithermal neutron flux ~13.2 times higher than the beam without the SMA. After some optimization procedures, the beam in the final design provides a maximum advantage depth (AD) of 8.9 cm, a minimum AD of 7.3 cm, an advantage ratio of 5.5, and a therapeutic relative biological effectiveness dose rate of 4.23 cGy/min per 100 mg of 252Cf at a depth of 7.0 cm in the brain phantom. This dose rate is ~10 times higher than that provided by the beam designed without the SMA. Therefore, it is expected that the neutron beam can be more effective for treatment of tumors due to the increased therapeutic dose rates.