ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Article considers incorporation of AI into nuclear power plant operations
The potential application of artificial intelligence to the operation of nuclear power plants is explored in an article published in late December in the Washington Examiner. The article, written by energy and environment reporter Callie Patteson, presents the views of a number of experts, including Yavuz Arik, a strategic energy consultant.
Hilbert Christensen
Nuclear Technology | Volume 124 | Number 2 | November 1998 | Pages 165-174
Technical Paper | Materials for Nuclear Systems | doi.org/10.13182/NT98-A2916
Articles are hosted by Taylor and Francis Online.
Calculations of UO2-fuel corrosion and gas production from radiolysis of water have been carried out. The calculations simulated conditions of spent-fuel leaching experiments carried out within a European Union project. In some of these experiments, carried out by Forschungszentrum Karlsruhe, a fuel pellet was exposed in deionized water for 200 days, and fuel alteration and gas production rates were measured. A radiolysis model, developed previously, was used to calculate the oxidation of UO2 caused by water radiolysis products. The calculated fuel alteration rate was 2.2 × 10-8 mol UO2(g U)-1day-1, about three times higher than the experimental rate, 6.3 × 10-9 mol UO2(g U)-1day-1.The fair agreement between calculated and experimental corrosion rates shows that the model may be used for prediction of corrosion behavior of spent fuel in the repository. The calculated gas generation rates were 2 × 10-8 and 1 × 10-8 mol(g U)-1day-1 for hydrogen and oxygen, respectively, about six times lower than the experimental values.