ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Katsuyoshi Tatenuma, Yukio Hishinuma, Satoshi Tomatsuri, Kousaburo Ohashi, Yoshiharu Usui
Nuclear Technology | Volume 124 | Number 2 | November 1998 | Pages 147-164
Technical Paper | Decontamination/Decommissioning | doi.org/10.13182/NT98-A2915
Articles are hosted by Taylor and Francis Online.
A new gas-phase decontamination technology is developed based on gaseous reactions utilizing the volatile properties of the carbonyl and fluoric compounds of radioactive transition elements and actinides (corrosion products, fission products, and transuranium) on a material's surface. The feasibility of this new technology is determined by removing nonradioactive (Co, Cr, Ni, Re, Mo, Mn, Ru, and Zn) and radioactive (60Co, 63Ni, and 103Ru) nuclide transition elements as gaseous forms under high CO pressure (50 to 200 atm) and high temperature (~350°C). Experiments involving U and using fluoric gases are also performed. For radioactive nuclides existing in an oxide layer of stainless steel, pretreatment with supercritical CO2 + I2 + H2O is used to remove the oxide layer completely, and by the subsequent gaseous reaction, 95 to 99% of 60Co is removed from the layer by CO gas treatment at a pressure of 200 atm. The plasma treatment using fluorine gas results in U being removed with high efficiency (~60%) after only 5 min, even at a reduced pressure of 1 Torr and at room temperature. When the carbonyl and fluoric species generated from a nontoxic gas mixture (1 Torr) of CF4 and O2 is used, U and 60Co are removed simultaneously with high removal efficiencies of 80 and 100% for 60Co and U, respectively. The data provide evidence that chemically reactive plasma treatment is available as a gas-phase decontamination method that can be conducted using nontoxic gases under safe and mild conditions such as reduced pressure, shorter time periods, and ambient temperature. Finally, a fluoric chemical reaction can be used to remove solid U deposits by converting them to gaseous U compounds at room temperature and without using plasma treatment. The pressure of ClF3 gradually affects the higher removal efficiency of U, and the removal efficiency is >90% under the conditions of 30 min and >100 Torr. The results verify that chemical reactions involving carbonylation and fluorination reactions can be utilized for gas-phase decontamination, and the potential for this new idea for decontamination is affirmed.If gas-phase decontamination technology is further developed, it will be not only convenient but also economically advantageous because decontaminating and treating the large volume of nuclear wastes - especially nonincinerable radioactive wastes - are currently very difficult.