ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Article considers incorporation of AI into nuclear power plant operations
The potential application of artificial intelligence to the operation of nuclear power plants is explored in an article published in late December in the Washington Examiner. The article, written by energy and environment reporter Callie Patteson, presents the views of a number of experts, including Yavuz Arik, a strategic energy consultant.
Ki Yong Choi, Hyun Sik Park, Sang Jae Kim, Hee Cheon No, Yong Seok Bang
Nuclear Technology | Volume 124 | Number 2 | November 1998 | Pages 103-117
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT98-A2912
Articles are hosted by Taylor and Francis Online.
The condensation models of the standard RELAP5/MOD3.2 code are assessed and improved based on a database that is constructed from previous experimental data of various condensation conditions. The RELAP5/MOD3.2 default model of laminar film condensation does not give any reliable predictions, and the alternative model always predicts values higher than those of the experimental data. Therefore, a new correlation based on the experimental data of various operating ranges is needed. The Shah correlation, which is used to calculate the turbulent film condensation heat transfer coefficients in the standard RELAP5/MOD3.2, gives good agreement with the database except for Kuhn's experimental data. The RELAP5/MOD3.2 horizontally stratified condensation model overpredicts both cocurrent and countercurrent experimental data. The Kim correlation predicts the database relatively well compared with that of RELAP5/MOD3.2.