ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Mark S. Jarzemba
Nuclear Technology | Volume 124 | Number 1 | October 1998 | Pages 82-87
Technical Paper | Reprocessing | doi.org/10.13182/NT98-A2910
Articles are hosted by Taylor and Francis Online.
A method is described to estimate the heat generation rate of various high-level waste (HLW) forms composed primarily of either a sludge (with a composition similar to that in the Hanford HLW tanks) or borosilicate glass. The main heat source is from radioactive decay and subsequent self-absorption of particles emitted from 137Cs, 90Sr, or their radioactive daughters contained in the waste form. The heat generation rate of the waste form is usually an important parameter in safety and performance assessments and will likely be a part of the specifications required for the vitrified waste. The heat generation rate depends on the size of the waste because larger waste forms will tend to absorb a greater fraction of the gamma radiation from 137mBa decays (a short-lived radioactive daughter of 137Cs). Because beta radiation from these two nuclides is short ranged (only a few tenths of a millimetre in water), assumption of complete self-absorption of beta radiation is justifiable. Previous work in this area estimated upper and lower bounds for the volume-averaged heat generation rate per litre of waste based on total (i.e., large-sized waste forms) and zero (i.e., small-sized waste forms) self-absorption of gamma radiation emitted from 137mBa. This analysis extends the previous work to more adequately estimate the heat generation rate of intermediate-sized waste forms based on the composition of the waste (either borosilicate glass or a simulated sludge), and the size of the waste as characterized by the surface-area-to-volume ratio. The analyses are based on runs of the MCNP version 4A code.