ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Hae Yong Jeong, Hee Cheon No
Nuclear Technology | Volume 124 | Number 1 | October 1998 | Pages 52-64
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT98-A2908
Articles are hosted by Taylor and Francis Online.
A few features of the reflood model in RELAP5/MOD3.1 have been modified to improve the unrealistic prediction results of the model. In the new method, the modified Zuber pool boiling critical heat flux correlation is adopted in the range of mass flux G < 150 kg/m2s. The new criterion for reflood drop size, which is characterized by the use of We = 1.5 and a minimum drop size of 0.0007 m for p* 0.025, has been suggested based on some experimental data and the correlation derived through regression analyses of many reflood experiments. To describe the wall-to-vapor heat transfer at low pressure and low flow, the Webb-Chen correlation is utilized. The suggested method has been verified through simulations of the Lehigh University rod bundle reflood tests. A sensitivity study shows that the effect of drag coefficients is dominant in the reflood model. It is proved that current modifications result in much improved quench behavior and accurate wall and vapor temperature predictions when they are compared with those by the frozen version of RELAP5/MOD3.1.