ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Article considers incorporation of AI into nuclear power plant operations
The potential application of artificial intelligence to the operation of nuclear power plants is explored in an article published in late December in the Washington Examiner. The article, written by energy and environment reporter Callie Patteson, presents the views of a number of experts, including Yavuz Arik, a strategic energy consultant.
Charles W. Forsberg, Edward C. Beahm
Nuclear Technology | Volume 123 | Number 3 | September 1998 | Pages 341-349
Technical Note | Reprocessing | doi.org/10.13182/NT98-A2904
Articles are hosted by Taylor and Francis Online.
A new process has been invented that converts complex wastes containing fissile materials into a chemical form that allows the use of existing technologies (such as Purex and ion exchange) to recover the fissile materials and convert the resultant wastes to glass. Potential feed materials include (a) uranium fissile wastes, (b) miscellaneous spent nuclear fuel, and (c) plutonium scrap and residue. The initial feed materials may contain mixtures of metals, ceramics, amorphous solids, halides, and organics.The process consists of three major sets of process operations. During the first set of operations, the feed is dissolved into molten lead-borate glass and then converted to a boron oxide (B2O3) fusion melt. During this process, (a) the organics and metals are oxidized and (b) the halides and noble metals are separated from the melt. During the second set of operations, the cooled fusion melt is dissolved into nitric acid, and the uranium and plutonium are recovered from the acid using standard aqueous separation processes such as Purex and ion exchange. During the third set of operations, standard waste vitrification processes convert the residual waste to borosilicate glass. The B2O3 can be recovered and recycled at several locations within the process.