ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
J. S. Baek, A. Cuadra, L.-Y. Cheng, A. L. Hanson, N. R. Brown, D. J. Diamond
Nuclear Technology | Volume 185 | Number 1 | January 2014 | Pages 1-20
Technical Paper | Fission Reactors | doi.org/10.13182/NT13-26
Articles are hosted by Taylor and Francis Online.
Reactivity insertion accidents have been analyzed for the 20-MW D2O-moderated research reactor (NBSR) at the National Institute of Standards and Technology (NIST). The analysis has been carried out for the present core, which contains highly enriched uranium fuel, and for a proposed equilibrium core with low-enriched uranium fuel. The time-dependent analysis of the primary system is performed with a RELAP5 model that includes the reactor vessel, primary coolant pump, heat exchanger, fuel element geometry, and flow channels for both the 6 inner and 24 outer fuel elements. Postprocessing of the simulation results has been conducted to evaluate minimum critical heat flux (CHF) ratio and minimum onset of flow instability (OFI) ratio using the Sudo-Kaminaga correlations and Saha-Zuber criteria, respectively. Evaluations are carried out for the control rod withdrawal start-up accident and the maximum reactivity insertion accident. In both cases the RELAP5 results indicate that no damage to the fuel will occur and there is adequate margin to CHF and OFI because of sufficient coolant flow through the fuel channels and the negative reactivity insertion due to scram.