ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Jiawei Sheng, Shanggeng Luo, Baolong Tang
Nuclear Technology | Volume 123 | Number 3 | September 1998 | Pages 296-303
Technical Paper | Radioactive Waste Management and Disposal | doi.org/10.13182/NT98-A2900
Articles are hosted by Taylor and Francis Online.
Temperature has strong effects on the leaching behavior of the 90-19/U simulated high-level waste glass form. The Arrhenius equation is used to determine the change in the glass corrosion mechanism throughout the different temperature ranges. The apparent activation energies have been obtained for different leaching conditions. In deionized water, the glass corrosion mechanism is similar whether the leaching condition is static or dynamic. The glass corrosion process is dominated by the ion exchange reactions at lower temperatures (60 to ~70°C); however, the glass corrosion process is dominated by the network hydrolysis reactions at higher temperatures (>70°C). The apparent activation energy in the lower temperature range is larger than that of the higher temperature range. In simulated underground water, the ion exchange reactions dominated the glass corrosion mechanism at temperatures from 50 to 150°C, and the large amount of ions in simulated underground water would participate in the ion exchange reactions with the glass.