ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Ninos S. Garis, Imre Pázsit, Urban Sandberg, Tell Andersson
Nuclear Technology | Volume 123 | Number 3 | September 1998 | Pages 278-295
Technical Paper | Reactor Operations and Control | doi.org/10.13182/NT98-A2899
Articles are hosted by Taylor and Francis Online.
A method is described by which the axial position of a control rod can be determined. The method is based on the influence of a partially inserted control rod on the axial flux profile. By measuring this flux profile, the control rod position can be in principle unfolded. One problem is however that the relationship between rod position and flux profile is rather implicit and cannot be explicitly inverted. Thus, it is suggested here to use neural network techniques to unfold the rod position from the measured flux profile. For training of the network, a large number of flux profiles are needed, corresponding to various known rod positions. These data can be generated by advanced core calculational codes. In this study, the Studsvik core master system SIMULATE was used. The method was tested with good results on both fully simulated data as well as on a measurement taken at the Swedish pressurized water reactor Ringhals 4.