ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Article considers incorporation of AI into nuclear power plant operations
The potential application of artificial intelligence to the operation of nuclear power plants is explored in an article published in late December in the Washington Examiner. The article, written by energy and environment reporter Callie Patteson, presents the views of a number of experts, including Yavuz Arik, a strategic energy consultant.
Kenneth D. Wright, James S. Tulenko, Edward T. Dugan
Nuclear Technology | Volume 123 | Number 3 | September 1998 | Pages 259-267
Technical Paper | Reactor Safety | doi.org/10.13182/NT98-A2897
Articles are hosted by Taylor and Francis Online.
Monte Carlo N-Particle Transport Code System (MCNP) criticality calculations were performed on a library of critical benchmark experiments to obtain preliminary bias values and subcritical margins to be utilized in licensing calculations for high-level radioactive waste disposal.The critical experiments library includes a broad range of system physical and neutronic characteristics that are representative of a range of potential criticality configurations relevant to long-term deep geological disposal. Two hundred and eighty-nine critical benchmark experiments were selected and grouped into 20 critical experiment classifications.From the results of this study, an applicable subcritical margin or maximum allowable keff can be selected for preliminary repository criticality analysis based on the similarity between the physical and neutronic characteristics of the system being analyzed and the relevant library classification. The results of this study provide quantification of both the confidence associated with the MCNP code and the presented conservative method for performing criticality evaluations relevant to repository emplacement of high-level radioactive waste.