ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Patrick G. Boyle, Daniel E. Hughes, Samuel H. Levine
Nuclear Technology | Volume 123 | Number 2 | August 1998 | Pages 222-230
Technical Note | Fission Reactors | doi.org/10.13182/NT98-A2894
Articles are hosted by Taylor and Francis Online.
The Pennsylvania State University Breazeale (TRIGA) Reactor (PSBR) has operated for 25 yr (440 MWd) using a mixed 12 wt% ZrHx-U and 8.5 wt% ZrHx-U fuel configuration (both enriched to 20 wt% 235U, and x, the ratio of H to Zr, is nominally 1.65). In this configuration, the most reactive 12 wt% ZrHx-U fuel is always in the B-ring. The B-ring is the innermost hexagonal ring, incorporating 6 fuel elements, and the C-ring is the next outward ring, having 12 fuel elements. PSBR experience during pulsing and steady-state operation indicates that with these configurations the maximum fuel temperatures should be reduced in order to extend the useful life of the 12 wt% ZrHx-U fuel. This is because during the past 10 yr, the fuel temperatures of the new fuel have been significantly higher than the original fuel. The instrumented fuel element (I-15) loaded into the core ~10 yr ago and the most recent batch of fresh 12 wt% ZrHx-U fuel elements (six total, including I-16 and I-17) measured temperatures more than 100°C higher than any previous instrumented fuel element. Subsequent pulsing of I-15 increased its measured fuel temperature to where it began to approach the limiting safety system setting. Recent pulsing of I-16 and I-17 caused their steady-state fuel temperatures to decrease slightly, but they remain high. The new fuel management plan reduces these fuel temperatures by replacing the used 12 wt% ZrHx-U fuel in the C-ring with fresh 12 wt% ZrHx-U fuel. The 12 wt% ZrHx-U fuel in the B-ring is replaced with 8.5 wt% ZrHx-U fuel. Experiments have been performed to verify the predicted core parameters for the new plan. The lifetime of the new 12 wt% ZrHx-U fuel should now be limited by its maximum allowed burnup, which has not occurred so far.