ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Humberto E. Garcia
Nuclear Technology | Volume 123 | Number 2 | August 1998 | Pages 166-183
Technical Paper | Decontamination/Decommissioning | doi.org/10.13182/NT98-A2890
Articles are hosted by Taylor and Francis Online.
Production of sodium hydroxide has been an important process in the chemical industry. Sodium hydroxide can be derived in several ways. One way in particular is based on combining liquid sodium with water in a caustic medium. This reaction has appeared in the nuclear industry as an important process in current decommissioning activities for liquid-metal nuclear reactors. The significance is explained as follows. Liquid-metal reactors often use liquid sodium as a heat transfer medium. Being radioactive and chemically reactive, this sodium is a mixed waste that must be processed before disposal. An accepted solution is to convert the radioactive liquid sodium to sodium carbonate, a chemically inert low-level waste suitable for near-surface burial. The conversion can be carried out in two independent processes. A first process converts sodium to sodium hydroxide. A second process converts the resulting caustic product to sodium carbonate. The former process is addressed, i.e., the chemical process of combining sodium with water in a caustic medium to produce additional sodium hydroxide. Because of the particular dynamics, characterizing this chemical process is important to predict plant behavior to control actions, disturbances, and upsetting conditions. To this end, the describing formulations of this conversion are derived in a particular physical assembly. Based on the resulting description, a computer model was developed from mass and energy balance equations, swelling predictions, and hydraulic relationships present in the system. The model was then used to synthesize a simple control strategy and to analyze its performance. In particular, the control algorithms that regulate the sodium, water, and caustic flows are discussed. The controllers were then validated by computer simulation, and some plant responses are presented.