ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Article considers incorporation of AI into nuclear power plant operations
The potential application of artificial intelligence to the operation of nuclear power plants is explored in an article published in late December in the Washington Examiner. The article, written by energy and environment reporter Callie Patteson, presents the views of a number of experts, including Yavuz Arik, a strategic energy consultant.
Humberto E. Garcia
Nuclear Technology | Volume 123 | Number 2 | August 1998 | Pages 166-183
Technical Paper | Decontamination/Decommissioning | doi.org/10.13182/NT98-A2890
Articles are hosted by Taylor and Francis Online.
Production of sodium hydroxide has been an important process in the chemical industry. Sodium hydroxide can be derived in several ways. One way in particular is based on combining liquid sodium with water in a caustic medium. This reaction has appeared in the nuclear industry as an important process in current decommissioning activities for liquid-metal nuclear reactors. The significance is explained as follows. Liquid-metal reactors often use liquid sodium as a heat transfer medium. Being radioactive and chemically reactive, this sodium is a mixed waste that must be processed before disposal. An accepted solution is to convert the radioactive liquid sodium to sodium carbonate, a chemically inert low-level waste suitable for near-surface burial. The conversion can be carried out in two independent processes. A first process converts sodium to sodium hydroxide. A second process converts the resulting caustic product to sodium carbonate. The former process is addressed, i.e., the chemical process of combining sodium with water in a caustic medium to produce additional sodium hydroxide. Because of the particular dynamics, characterizing this chemical process is important to predict plant behavior to control actions, disturbances, and upsetting conditions. To this end, the describing formulations of this conversion are derived in a particular physical assembly. Based on the resulting description, a computer model was developed from mass and energy balance equations, swelling predictions, and hydraulic relationships present in the system. The model was then used to synthesize a simple control strategy and to analyze its performance. In particular, the control algorithms that regulate the sodium, water, and caustic flows are discussed. The controllers were then validated by computer simulation, and some plant responses are presented.