ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Abdul R. Dulloo, Frank H. Ruddy, Thomas V. Congedo, John G. Seidel, Robert J. Gehrke
Nuclear Technology | Volume 123 | Number 1 | July 1998 | Pages 103-112
Technical Paper | Radiation Measurements and Instrumentation | doi.org/10.13182/NT98-A2883
Articles are hosted by Taylor and Francis Online.
Detection of Hg, Cd, and Pb within concrete matrices located in 8-gal drums was successfully demonstrated using a pulsed gamma neutron activation analysis system. Real-time assays of 600 s led to the detection of these metals at concentration levels ranging, in parts per million (ppm) by weight, from 487 to 19 820 for Hg, 485 to 8181 for Cd, and 9927 to 19 950 for Pb. The measurements of Hg and Cd relied on the observation of thermal neutron-induced prompt gamma rays, whereas the Pb measurements relied on the observation of decay gamma rays from 207mPb, a product of fast neutron-induced reactions in Pb. The projected lower limits of detection of the current system for a 600-s run are 15, 170, and 8600 ppm for Cd, Hg, and Pb, respectively. Up to a one-order magnitude of improvement in sensitivity is anticipated through the enhancement of the system's detector and neutron source. The results obtained confirm the potential of prompt and decay gamma neutron activation analysis as an effective method for the nondestructive analysis of hazardous metals in mixed-waste drums.