ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
Abdul R. Dulloo, Frank H. Ruddy, Thomas V. Congedo, John G. Seidel, Robert J. Gehrke
Nuclear Technology | Volume 123 | Number 1 | July 1998 | Pages 103-112
Technical Paper | Radiation Measurements and Instrumentation | doi.org/10.13182/NT98-A2883
Articles are hosted by Taylor and Francis Online.
Detection of Hg, Cd, and Pb within concrete matrices located in 8-gal drums was successfully demonstrated using a pulsed gamma neutron activation analysis system. Real-time assays of 600 s led to the detection of these metals at concentration levels ranging, in parts per million (ppm) by weight, from 487 to 19 820 for Hg, 485 to 8181 for Cd, and 9927 to 19 950 for Pb. The measurements of Hg and Cd relied on the observation of thermal neutron-induced prompt gamma rays, whereas the Pb measurements relied on the observation of decay gamma rays from 207mPb, a product of fast neutron-induced reactions in Pb. The projected lower limits of detection of the current system for a 600-s run are 15, 170, and 8600 ppm for Cd, Hg, and Pb, respectively. Up to a one-order magnitude of improvement in sensitivity is anticipated through the enhancement of the system's detector and neutron source. The results obtained confirm the potential of prompt and decay gamma neutron activation analysis as an effective method for the nondestructive analysis of hazardous metals in mixed-waste drums.