ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
C. E. Sessions, J. H. DeVan
Nuclear Technology | Volume 9 | Number 2 | August 1970 | Pages 250-259
Material | Symposium on Theoretical Models for Predicting In-Reactor Performance of Fuel and Cladding Material | doi.org/10.13182/NT70-A28814
Articles are hosted by Taylor and Francis Online.
This paper describes the effect of temperature on the mass transfer of niobium alloys in lithium as determined in thermal convection loop tests to 1300°C. All loops were operated for 3000 h in an ultrahigh vacuum environment; A consistent finding in these tests was the preferential movement of zirconium and nitrogen between heated and cooled regions, which in 1200°C tests accounted for most of the observed weight changes. At 1300°C, transport of niobium was also reflected in the weight changes, and crystalline deposits of Nb(C,N) were found on hot-leg specimens. Examination of Nb-1% Zr specimens using an electron microprobe indicated the hot-leg surfaces to be depleted of zirconium to depths of 0.002 and 0.007 in. in 1200 and 1300°C tests, respectively. The results of calculations of the diffusivity of zirconium in niobium based on these data agree well with values predicted from extrapolation of higher temperature data.