ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Candidates for leadership provide statements: ANS Board of Directors
With the annual ANS election right around the corner, American Nuclear Society members will be going to the polls to vote for a vice president/president-elect, treasurer, and members-at-large for the Board of Directors. In January, Nuclear News published statements from candidates for vice president/president-elect and treasurer. This month, we are featuring statements from each nominee for the Board of Directors.
H. R. Warner, F. A. Nichols
Nuclear Technology | Volume 9 | Number 2 | August 1970 | Pages 148-166
Fuel Performance Model | Symposium on Theoretical Models for Predicting In-Reactor Performance of Fuel and Cladding Material | doi.org/10.13182/NT70-A28805
Articles are hosted by Taylor and Francis Online.
A computer simulation of a fuel region has been developed based on movement of fission gas bubbles in solids under a thermal gradient. Within this region, fission gas events are followed via a Monte Carlo technique. Individual bubbles are followed through their time history from nucleation to release from the fuel, with interactions at dislocations and grain boundaries. Saturation in gaseous swelling at elevated temperature is predicted. A maximum in swelling is predicted at intermediate temperatures for a given burnup. These swelling and gas release predictions at high temperatures are in good agreement with experimental results. A low temperature modification of dislocation density is required to allow for effects dominant at low temperature which are not included in the current version of the program. With this low temperature modification, swelling predictions are in good agreement with experimental observations over the entire operating temperature range.