ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Candidates for leadership provide statements: ANS Board of Directors
With the annual ANS election right around the corner, American Nuclear Society members will be going to the polls to vote for a vice president/president-elect, treasurer, and members-at-large for the Board of Directors. In January, Nuclear News published statements from candidates for vice president/president-elect and treasurer. This month, we are featuring statements from each nominee for the Board of Directors.
C. C. Dollins, H. Ocken
Nuclear Technology | Volume 9 | Number 2 | August 1970 | Pages 141-147
Fuel Performance Model | Symposium on Theoretical Models for Predicting In-Reactor Performance of Fuel and Cladding Material | doi.org/10.13182/NT70-A28804
Articles are hosted by Taylor and Francis Online.
Current fuel swelling models based upon the growth of fission gas bubbles do not consider effects due to radiation induced re-solution phenomena. This paper describes a fission gas swelling model which assumes that fission fragments will destroy existing gas bubbles and maintain the resulting gas atoms in supersaturated solid solution. Such a model should be particularly applicable to fuels operating at low temperatures and high fission rates. Bubble nucleation and growth then take place until another fission fragment again passes through the same region. Bubble growth is calculated using reaction rate theory over the period of time in which no radiation damage occurs. The model predicts bubble growth significantly smaller than that experimentally determined in UO2. This discrepancy is attributed to assumptions made in defining the re-solution mechanism. The model implies that fission gas bubble growth is a state junction independent of path.