ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Reboot: Nuclear needs a success . . . anywhere
The media have gleefully resurrected the language of a past nuclear renaissance. Beyond the hype and PR, many people in the nuclear community are taking a more measured view of conditions that could lead to new construction: data center demand, the proliferation of new reactor designs and start-ups, and the sudden ascendance of nuclear energy as the power source everyone wants—or wants to talk about.
Once built, large nuclear reactors can provide clean power for at least 80 years—outlasting 10 to 20 presidential administrations. Smaller reactors can provide heat and power outputs tailored to an end user’s needs. With all the new attention, are we any closer to getting past persistent supply chain and workforce issues and building these new plants? And what will the election of Donald Trump to a second term as president mean for nuclear?
As usual, there are more questions than answers, and most come down to money. Several developers are engaging with the Nuclear Regulatory Commission or have already applied for a license, certification, or permit. But designs without paying customers won’t get built. So where are the customers, and what will it take for them to commit?
T. T. Anderson
Nuclear Technology | Volume 9 | Number 3 | September 1970 | Pages 422-433
Technique | Symposium on Theoretical Models for Predicting In-Reactor Performance of Fuel and Cladding Material | doi.org/10.13182/NT70-A28797
Articles are hosted by Taylor and Francis Online.
The hydrodynamics of coolant flow in a natural circulation, nuclear-heated boiler are dependent upon interactions of the generated heat, the available driving head of vapor in the two-phase mixture, and flow of the coolant. Where at steady operating conditions a slight increase in heat generation will induce unstable flow, circulation hydrodynamics can be investigated by small-signal techniques of control system theory. The flow-pressure interaction can be described in terms of the hydraulic impedance which is the frequency-transformed ratio of two perturbed quantities, differential pressure over flow rate. The hydraulic impedance is analogous to acoustic impedance (acoustic pressure/particle velocity) of compressible media and to mechanical impedance (force applied to structure/resulting velocity) of rigid body mechanics. Measurements of the flow-vapor interaction and of the flow-pressure interaction (hydraulic impedance) are compared to a simplified theory, to demonstrate how the impedance approach aids understanding of complex two-phase phenomena. As a practical application, the flow stability of a boiling loop is predicted by measured hydraulic impedances.