ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
M. H. Fontana
Nuclear Technology | Volume 9 | Number 3 | September 1970 | Pages 364-375
Fuel | Symposium on Theoretical Models for Predicting In-Reactor Performance of Fuel and Cladding Material | doi.org/10.13182/NT70-A28791
Articles are hosted by Taylor and Francis Online.
The amount of fission products remaining in the molten mass of material that could result from core melt-through must be known to evaluate the heat loads on various parts of the structure, and depends on many factors too numerous to mention here. The present work was confined to an approximate evaluation of diffusion and internal convection as mass transfer mechanisms under fairly quiescent conditions. This condition was chosen because it would result in larger amounts of heat-generating fission products remaining in the melt than would be the case with more violent agitation. Internal heat generation in a molten slab of fluid cooled primarily from the upper surface would create a temperature gradient which, at some critical value, would cause internal convection currents due to the greater buoyancy of the hotter material in the lower portions of the melt. These convection currents enhance both the heat and mass transfer from the interior of the molten material to the surface. The heat transfer and rate of release of fission products (using yttrium oxide as an example) from a slab of molten fuel and steel were calculated and the results compared with a diffusion calculation. A sensitivity analysis was performed and the effects of wide variations in the thickness of the melt, viscosity, coefficient of thermal expansion, diffusion coefficient, specific heat, and thermal conductivity are reported. For the base case of yttrium oxide in 200 tons of molten UO2 and steel in a slab 17.1 cm thick, the time required to release 80% of the fission product was 9 h, compared with 40 days for the case where a diffusion model was assumed. Although these results are very approximate, being based on estimated thermophysical properties and idealized assumptions, they show that the effect of internal convection on mass transfer is so important that it cannot be ignored in any process where its occurrence may be suspected.