ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Reboot: Nuclear needs a success . . . anywhere
The media have gleefully resurrected the language of a past nuclear renaissance. Beyond the hype and PR, many people in the nuclear community are taking a more measured view of conditions that could lead to new construction: data center demand, the proliferation of new reactor designs and start-ups, and the sudden ascendance of nuclear energy as the power source everyone wants—or wants to talk about.
Once built, large nuclear reactors can provide clean power for at least 80 years—outlasting 10 to 20 presidential administrations. Smaller reactors can provide heat and power outputs tailored to an end user’s needs. With all the new attention, are we any closer to getting past persistent supply chain and workforce issues and building these new plants? And what will the election of Donald Trump to a second term as president mean for nuclear?
As usual, there are more questions than answers, and most come down to money. Several developers are engaging with the Nuclear Regulatory Commission or have already applied for a license, certification, or permit. But designs without paying customers won’t get built. So where are the customers, and what will it take for them to commit?
M. H. Fontana
Nuclear Technology | Volume 9 | Number 3 | September 1970 | Pages 364-375
Fuel | Symposium on Theoretical Models for Predicting In-Reactor Performance of Fuel and Cladding Material | doi.org/10.13182/NT70-A28791
Articles are hosted by Taylor and Francis Online.
The amount of fission products remaining in the molten mass of material that could result from core melt-through must be known to evaluate the heat loads on various parts of the structure, and depends on many factors too numerous to mention here. The present work was confined to an approximate evaluation of diffusion and internal convection as mass transfer mechanisms under fairly quiescent conditions. This condition was chosen because it would result in larger amounts of heat-generating fission products remaining in the melt than would be the case with more violent agitation. Internal heat generation in a molten slab of fluid cooled primarily from the upper surface would create a temperature gradient which, at some critical value, would cause internal convection currents due to the greater buoyancy of the hotter material in the lower portions of the melt. These convection currents enhance both the heat and mass transfer from the interior of the molten material to the surface. The heat transfer and rate of release of fission products (using yttrium oxide as an example) from a slab of molten fuel and steel were calculated and the results compared with a diffusion calculation. A sensitivity analysis was performed and the effects of wide variations in the thickness of the melt, viscosity, coefficient of thermal expansion, diffusion coefficient, specific heat, and thermal conductivity are reported. For the base case of yttrium oxide in 200 tons of molten UO2 and steel in a slab 17.1 cm thick, the time required to release 80% of the fission product was 9 h, compared with 40 days for the case where a diffusion model was assumed. Although these results are very approximate, being based on estimated thermophysical properties and idealized assumptions, they show that the effect of internal convection on mass transfer is so important that it cannot be ignored in any process where its occurrence may be suspected.