ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
R. Bullough, B. L. Eyre, R. C. Perrin
Nuclear Technology | Volume 9 | Number 3 | September 1970 | Pages 346-355
Fuel Element Performance Model | Symposium on Theoretical Models for Predicting In-Reactor Performance of Fuel and Cladding Material | doi.org/10.13182/NT70-A28789
Articles are hosted by Taylor and Francis Online.
A model has been developed to describe the kinetics of void growth in metals during irradiation which explicitly includes the presence of both migrating interstitials and vacancies. It is clear that void growth can occur only when an excess flux of vacancies arrives at the void surface and this can be achieved by taking into account the preferred drift of the interstitials to the dislocation sinks as a result of the long-range size effect interaction. Results of numerical calculations of the vacancy and interstitial average concentration in stainless steel and molybdenum irradiated under typical fast reactor conditions are presented, and these are used to calculate void growth rates as a function of temperature. It is shown that the void growth rate goes through a maximum when plotted against temperature and this is consistent with the experimental swelling data. During the early stages of irradiation, when the number of point defects arriving at voids is negligible compared with those being lost at other sinks, the swelling rate is proportional to (t)3 (t = time). Cold work has a beneficial effect in the early stages of irradiation by reducing the void growth rates, but it could have a deleterious effect over a long term by prolonging the period over which the swelling follows the rapid (t)3 law.