ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
R. Bullough, B. L. Eyre, R. C. Perrin
Nuclear Technology | Volume 9 | Number 3 | September 1970 | Pages 346-355
Fuel Element Performance Model | Symposium on Theoretical Models for Predicting In-Reactor Performance of Fuel and Cladding Material | doi.org/10.13182/NT70-A28789
Articles are hosted by Taylor and Francis Online.
A model has been developed to describe the kinetics of void growth in metals during irradiation which explicitly includes the presence of both migrating interstitials and vacancies. It is clear that void growth can occur only when an excess flux of vacancies arrives at the void surface and this can be achieved by taking into account the preferred drift of the interstitials to the dislocation sinks as a result of the long-range size effect interaction. Results of numerical calculations of the vacancy and interstitial average concentration in stainless steel and molybdenum irradiated under typical fast reactor conditions are presented, and these are used to calculate void growth rates as a function of temperature. It is shown that the void growth rate goes through a maximum when plotted against temperature and this is consistent with the experimental swelling data. During the early stages of irradiation, when the number of point defects arriving at voids is negligible compared with those being lost at other sinks, the swelling rate is proportional to (t)3 (t = time). Cold work has a beneficial effect in the early stages of irradiation by reducing the void growth rates, but it could have a deleterious effect over a long term by prolonging the period over which the swelling follows the rapid (t)3 law.