ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
H. Kämpf, G. Karsten
Nuclear Technology | Volume 9 | Number 3 | September 1970 | Pages 288-300
Fuel Element Performance Model | Symposium on Theoretical Models for Predicting In-Reactor Performance of Fuel and Cladding Material | doi.org/10.13182/NT70-A28783
Articles are hosted by Taylor and Francis Online.
The thermal effects of different types of void volumes within a fuel pin, such as porosity, central void, and the gas gap between fuel and clad are examined. A new general relation for the dependence of thermal conductivity on the closed porosity is deduced. For given gas contents and specific ranges of pore temperatures and sizes, a simple approximate equation is set up, which is in good agreement with experimentally obtained results. A central void is very effective in reducing the maximum temperature; and its use implies a considerable increase in linear pin power. In-pile migration of the porosity in the hotter regions of oxide fuel pins forms or increases the central void and densifies the hotter region. This effect is calculated in a two-zone porosity model. For a uniform gap between fuel and clad, the temperature drop is calculated as a function of gap width, linear pin power, inner temperature of clad, inside radius of clad, emissivities of surfaces, and types of gas within the gap, such as noble gases and mixtures of He with gaseous fission products.