ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Article considers incorporation of AI into nuclear power plant operations
The potential application of artificial intelligence to the operation of nuclear power plants is explored in an article published in late December in the Washington Examiner. The article, written by energy and environment reporter Callie Patteson, presents the views of a number of experts, including Yavuz Arik, a strategic energy consultant.
Yasunori Bessho, Takashi Nakayama, Michiro Yokomi, Katsuma Nakayama, Hiroki Sano, Nobuhiro Kanazawa
Nuclear Technology | Volume 123 | Number 1 | July 1998 | Pages 30-43
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT98-A2877
Articles are hosted by Taylor and Francis Online.
The steam-water power reactor core concept, originally proposed by several Russian engineers, is expected to improve natural uranium utilization through self-sustaining plutonium by using tight-lattice plutonium fuels and large void fraction two-phase flow, and to realize inherent safety characteristics through large neutron leakage from the core by a flat core configuration.Results are described for the core conceptual design for specifications meeting a 500-MW(electric) electricity supply for 13 months of continuous operation and 92 GWd/tonne fuel average discharge exposure. The design has core nuclear thermal-hydraulic characteristics that satisfy the specifications and limitations usually applied to boiling water reactors (BWRs), based on analyses by the three-dimensional multineutron-energy group diffusion analysis program CITATION. Further, its safety characteristics satisfy limitations, usually applied to BWRs, by the steam cooling emergency core cooling system and the reflood system, based on analyses of a loss-of-coolant accident, which is thought to be most critical for a core with a small water inventory, by the general transient analysis program TRAC.