ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Candidates for leadership provide statements: ANS Board of Directors
With the annual ANS election right around the corner, American Nuclear Society members will be going to the polls to vote for a vice president/president-elect, treasurer, and members-at-large for the Board of Directors. In January, Nuclear News published statements from candidates for vice president/president-elect and treasurer. This month, we are featuring statements from each nominee for the Board of Directors.
Thomas S. Bustard, Frank T. Princiotta, Harold N. Barr
Nuclear Technology | Volume 9 | Number 4 | October 1970 | Pages 572-583
Radioisotope | doi.org/10.13182/NT70-A28767
Articles are hosted by Taylor and Francis Online.
A new reentry protection material has been developed which acts as a thermal switch. It is a composite material, consisting of a ceramic foam uniformly impregnated with a metal which coats the ceramic foam structure. The composite is a thermal conductor [k ≅ 5 Btu/(ft h °F)] below the melting point of the metal impregnant and switches to an insulator [k ≅ 0.1 Btu/(ft h °F)] above its melting point. This switching effect is irreversible. Materials investigated to date are silica, alumina, and zirconia foams with silver and copper as the metal impregnants. These combinations yield a thermal switch which is activated at the melting point of the impregnants, i.e., 1762°F for silver and 1982°F for copper. Other metals can be utilized to increase or decrease the switching temperature. These composite materials have specific application to radioisotope fueled space power systems. For this application, the material selected would be placed around the fuel capsule, allowing the heat to pass through with only a small temperature differential incurred. When exposed to a reentry heat pulse, the material would switch to an insulator, thereby allowing intact and safe reentry of the capsule. Thermal conductivity testing and plasma jet testing have been performed and indicate that the composite material is an effective reentry protection material.