ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
My story: Stanley Levinson—ANS member since 1983
Levinson early in his career and today.
As a member of the American Nuclear Society, I have been to many conferences. The International Conference on Probabilistic Safety Assessment and Analysis (PSA ’25), embedded in ANS Annual Meeting in Chicago in June, held special significance for me with the PSA ’25 opening plenary session recognizing the 50th anniversary of the publication of WASH-1400, which helped define my career. Reflecting on that milestone sent me back to 1975, when I was just an undergraduate student studying nuclear engineering at Rensselaer Polytechnic Institute (RPI) in Troy, N.Y., focusing on my mechanics, fluids, and thermodynamic classes as well as my first set of nuclear engineering classes. At that time—and many times since—the question “Why nuclear engineering?” was raised.
Thomas S. Bustard, Frank T. Princiotta, Harold N. Barr
Nuclear Technology | Volume 9 | Number 4 | October 1970 | Pages 572-583
Radioisotope | doi.org/10.13182/NT70-A28767
Articles are hosted by Taylor and Francis Online.
A new reentry protection material has been developed which acts as a thermal switch. It is a composite material, consisting of a ceramic foam uniformly impregnated with a metal which coats the ceramic foam structure. The composite is a thermal conductor [k ≅ 5 Btu/(ft h °F)] below the melting point of the metal impregnant and switches to an insulator [k ≅ 0.1 Btu/(ft h °F)] above its melting point. This switching effect is irreversible. Materials investigated to date are silica, alumina, and zirconia foams with silver and copper as the metal impregnants. These combinations yield a thermal switch which is activated at the melting point of the impregnants, i.e., 1762°F for silver and 1982°F for copper. Other metals can be utilized to increase or decrease the switching temperature. These composite materials have specific application to radioisotope fueled space power systems. For this application, the material selected would be placed around the fuel capsule, allowing the heat to pass through with only a small temperature differential incurred. When exposed to a reentry heat pulse, the material would switch to an insulator, thereby allowing intact and safe reentry of the capsule. Thermal conductivity testing and plasma jet testing have been performed and indicate that the composite material is an effective reentry protection material.