ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE on track to deliver high-burnup SNF to Idaho by 2027
The Department of Energy said it anticipated delivering a research cask of high-burnup spent nuclear fuel from Dominion Energy’s North Anna nuclear power plant in Virginia to Idaho National Laboratory by fall 2027. The planned shipment is part of the High Burnup Dry Storage Research Project being conducted by the DOE with the Electric Power Research Institute.
As preparations continue, the DOE said it is working closely with federal agencies as well as tribal and state governments along potential transportation routes to ensure safety, transparency, and readiness every step of the way.
Watch the DOE’s latest video outlining the project here.
D. Okrent, W. B. Loewenstein, A. D. Rossin, A. B. Smith, B. A. Zolotar, J. M. Kallfelz
Nuclear Technology | Volume 9 | Number 4 | October 1970 | Pages 454-507
Department | Reactor | doi.org/10.13182/NT70-A28760
Articles are hosted by Taylor and Francis Online.
This paper examines the neutron-energy spectra of sodium-cooled fast reactors, with primary attention given to the neutron-energy range from 30 keV to 10 MeV, the major source of irradiation damage in a fast reactor. The status of relevant fast neutron cross-section knowledge is examined, and the influence of cross-section uncertainties is included in the comparison of theoretical predictions with experiment. Also examined, are differences among various theoretical methods and problems in determining the spectrum in real systems with interfaces and heterogeneities. The current status of studies of the EBR-II flux and spectrum is summarized, including determination of absolute flux magnitude and two-dimensional estimates of the considerable influence of neighboring subassemblies and experimental heterogeneity on the very high energy spectrum. Finally, the relationship between flux monitor data, knowledge of spectra, and radiation damage is discussed.