This paper examines the neutron-energy spectra of sodium-cooled fast reactors, with primary attention given to the neutron-energy range from 30 keV to 10 MeV, the major source of irradiation damage in a fast reactor. The status of relevant fast neutron cross-section knowledge is examined, and the influence of cross-section uncertainties is included in the comparison of theoretical predictions with experiment. Also examined, are differences among various theoretical methods and problems in determining the spectrum in real systems with interfaces and heterogeneities. The current status of studies of the EBR-II flux and spectrum is summarized, including determination of absolute flux magnitude and two-dimensional estimates of the considerable influence of neighboring subassemblies and experimental heterogeneity on the very high energy spectrum. Finally, the relationship between flux monitor data, knowledge of spectra, and radiation damage is discussed.