ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Claude Degueldre, Jean-Marie Paratte
Nuclear Technology | Volume 123 | Number 1 | July 1998 | Pages 21-29
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT98-A2876
Articles are hosted by Taylor and Francis Online.
The properties of zirconia cubic solid solutions doped with yttria, erbia, and ceria or thoria are investigated with emphasis on the potential use of this material as an inert matrix for Pu incineration in a light water reactor. The material is selected on the basis of its neutronic and chemical properties; Zr and Y are not neutron absorbers. Among the rare-earth elements, Er was identified as a suitable burnable poison and was found to be the best among the rare-earth elements. The high-density cubic solid solution is stable for a rather large range of compositions and from room temperature up to ~3000 K. The selected zirconia-based material has rather low heat conductivity (~2 Wm-1K-1) compared to UO2, and the annular pellet design was consequently suggested to overcome this low-energy transfer characteristic. Samples irradiated with low- and high-energy Xe ions up to a fluence of 1.8 × 1016 Xecm-2 were investigated by transmission electron microscopy. Low-energy (60-keV) Xe ions did not produce amorphization. From the observed bubble formation, swelling values during irradiation at room temperature and at high temperature (925 K) were estimated to be 0.19 and 0.72% by volume, respectively. Furthermore, no amorphization was obtained by Xe irradiation under extreme conditions such as high-energy (1.5-MeV) Xe ion irradiation and low temperature (20 K). This confirms the robustness of this material and argues in favor of the selection of a zirconia-based material as an advanced nuclear fuel for Pu incineration.