ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
What’s the most difficult question you’ve been asked as a maintenance instructor?
Blye Widmar
"Where are the prints?!"
This was the final question in an onslaught of verbal feedback, comments, and critiques I received from my students back in 2019. I had two years of instructor experience and was teaching a class that had been meticulously rehearsed in preparation for an accreditation visit. I knew the training material well and transferred that knowledge effectively enough for all the students to pass the class. As we wrapped up, I asked the students how they felt about my first big system-level class, and they did not hold back.
“Why was the exam from memory when we don’t work from memory in the plant?” “Why didn’t we refer to the vendor documents?” “Why didn’t we practice more on the mock-up?” And so on.
D. P. Roux, J. T. De Lorenzo
Nuclear Technology | Volume 9 | Number 5 | November 1970 | Pages 736-743
Paper | Instrument | doi.org/10.13182/NT70-A28749
Articles are hosted by Taylor and Francis Online.
In the presence of high gamma fields (l(105 to 107 R/h), the neutron sensitivity of a fission counter is drastically reduced because of gamma pulse pileup in the counter and in its associated preamplifier, thereby limiting the effective application of measurement techniques such as reactor neutron noise analysis in situations where gamma intensities of ≥l(106 R/h are encountered. To overcome this limitation a detector-preamplifier system with current-mode signal processing was developed. The detector, which contains electrode plates coated with enriched uranium, has a neutron sensitivity of 0.56 count/(sec nv). It is connected with 40 ft of cable to a low-noise preamplifier. This detector is designed to reduce alpha pulse pileup and gamma sensitivity and to have a fast charge-collection time. Current-mode signal processing required the development of a lownoise preamplifier. Measurements made with the system in gamma fields of 5 * 106 and 1 * 107 R/h showed a neutronsensitivity loss of 17 and 34%, respectively.