ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
N. D. Dudey, S. D. Harkness, H. Farrar, IV
Nuclear Technology | Volume 9 | Number 5 | November 1970 | Pages 700-710
Paper | Fuel | doi.org/10.13182/NT70-A28745
Articles are hosted by Taylor and Francis Online.
Helium concentrations have been measured in sections of Type-304 stainless-steel control and safety rod thimbles irradiated in EBR-II to a peak fluence of 8.8 × 1022 n/cm2. The results, obtained by high sensitivity gas mass spectrometric techniques, show that more helium is produced than is predicted from present calculations especially at the higher temperature regions of the rods. It is concluded that sources of helium by the (n,α) process with elements other than the primary constituents of stainless steel contribute a significant fraction of the total helium produced and that one or more of these impurities might be migrating to the hotter surfaces of the stainless steel. A 45% gradient of nitrogen concentration along one rod was measured but that alone seems insufficient in magnitude to explain the helium gradient.