ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Article considers incorporation of AI into nuclear power plant operations
The potential application of artificial intelligence to the operation of nuclear power plants is explored in an article published in late December in the Washington Examiner. The article, written by energy and environment reporter Callie Patteson, presents the views of a number of experts, including Yavuz Arik, a strategic energy consultant.
Gregory J. Van Tuyle
Nuclear Technology | Volume 122 | Number 3 | June 1998 | Pages 330-354
Technical Paper | Accelerators | doi.org/10.13182/NT98-A2874
Articles are hosted by Taylor and Francis Online.
As a result of advances in particle accelerator technology and difficulties in building new nuclear reactors, increasingly ambitious applications of particle accelerator-driven spallation targets have been proposed in recent years. The simplest applications are the spallation neutron sources needed for basic nuclear sciences, with proton beams in the 1- to 5-MW range to be driven into targets of lead, mercury, or tungsten to produce neutron fluxes higher than is practical with nuclear reactors. On a much larger scale, the proposed accelerator production of tritium would use a 170-MW proton beam to generate sufficient neutrons to produce ~3 kg tritium/yr, based on neutron capture in a 3He feedstock. Other proposals include the use of subcritical neutron multiplication, using waste actinides and/or fertile actinides to transmute nuclear wastes or support alternate fuel cycles. The basic technology and technical aspects of the numerous-proposed applications are described. Fundamental relationships regarding machine efficiencies, neutron production, and subcritical multiplication are provided and utilized to cross-compare concepts.