ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
R. W. Perkins, L. A. Rancitelli, J. A. Cooper, R. E. Brown
Nuclear Technology | Volume 9 | Number 6 | December 1970 | Pages 861-874
Analysis | doi.org/10.13182/NT70-A28718
Articles are hosted by Taylor and Francis Online.
Rapid nondestructive mineral analysis can be performed with use of a 252Cf neutron source and a lithium-drifted germanium [Ge(Li)] diode gammaray detector. Also, in situ analysis of terrestrial and marine mineral deposits appears practical. Laboratory studies show that a 1- or 2-min exposure of mineral samples to the thermalized neutron flux from a 1-mg 252Cf source followed by a 1- or 2-min count with an 80-cm3 Ge(Li) diode will allow the measurement of most elements at concentrations of 10- to 100-fold below the levels of economic interest. The technology developed for laboratory mineral analysis is described and its applicability to in situ terrestrial and seabed mineral exploration is discussed.