ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
From renaissance to reality: Infrastructure for a global nuclear fuel cycle
Dale Klein
This article was adapted from the author’s speech during a plenary at the 21st International Symposium on the Packaging and Transportation of Radioactive Materials (PATRAM 2025), San Antonio, Texas, July 2025.
There has been a lot of discussion lately about reforming the Nuclear Regulatory Commission. But I want to be clear: When it comes to nuclear safety and security, there is no place for partisan politics. I support efforts to streamline regulatory processes, but the independence and integrity of the NRC must remain sacrosanct. If we are serious about expanding nuclear power and reclaiming our global leadership in nuclear technology, having a strong independent regulator is fundamental.
Right now, we’re on the edge of a global nuclear resurgence driven by rising demand from data centers, growing concerns about energy security, and the need to decarbonize industry.
William F. Naughton, William A. Jester
Nuclear Technology | Volume 9 | Number 6 | December 1970 | Pages 851-855
Analysis | doi.org/10.13182/NT70-A28716
Articles are hosted by Taylor and Francis Online.
A pulsed-neutron activation analysis system capable of handling and analyzing short-lived radioisotopes with half-lives as short as 1 to 2 sec was developed. Since a single reactor pulse will induce more activity for short-lived neutron reaction products than continuous irradiation to saturation at a normal reactor power level, experimental procedures were formulated to analyze quantitatively a few important fast neutron reactions with short-lived products and to establish limits of detection for these reactions using this system. To augment the fast neutron reactions, a cadmium-lined in-core terminus was utilized to reduce (n,γ) interference reactions.
The reactions analyzed were 16O(n,ρ)l6N,19F(n,α)16N, 19F(n,γ)20F, 23Na(n,ρ)23Ne, 23Na(n,α)20F,34S(n,ρ)34P, and 31P(n,α)28Al. The detection limits which were attained for these reactions utilizing this system were: 54.8 µg for 16O, 0.23 and 0.19 µg for 19F, 1.8 and 8.0µg for 23Na, 150 µg for 34S, and 2.6 µg for 31P. Most of these limits are an order of magnitude or more lower than those reported by users of the Cockroft-Walton neutron generators usually employed for these analyses.