ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The Frisch-Peierls memorandum: A seminal document of nuclear history
The Manhattan Project is usually considered to have been initiated with Albert Einstein’s letter to President Franklin Roosevelt in October 1939. However, a lesser-known document that was just as impactful on wartime nuclear history was the so-called Frisch-Peierls memorandum. Prepared by two refugee physicists at the University of Birmingham in Britain in early 1940, this manuscript was the first technical description of nuclear weapons and their military, strategic, and ethical implications to reach high-level government officials on either side of the Atlantic. The memorandum triggered the initiation of the British wartime nuclear program, which later merged with the Manhattan Engineer District.
William F. Naughton, William A. Jester
Nuclear Technology | Volume 9 | Number 6 | December 1970 | Pages 851-855
Analysis | doi.org/10.13182/NT70-A28716
Articles are hosted by Taylor and Francis Online.
A pulsed-neutron activation analysis system capable of handling and analyzing short-lived radioisotopes with half-lives as short as 1 to 2 sec was developed. Since a single reactor pulse will induce more activity for short-lived neutron reaction products than continuous irradiation to saturation at a normal reactor power level, experimental procedures were formulated to analyze quantitatively a few important fast neutron reactions with short-lived products and to establish limits of detection for these reactions using this system. To augment the fast neutron reactions, a cadmium-lined in-core terminus was utilized to reduce (n,γ) interference reactions.
The reactions analyzed were 16O(n,ρ)l6N,19F(n,α)16N, 19F(n,γ)20F, 23Na(n,ρ)23Ne, 23Na(n,α)20F,34S(n,ρ)34P, and 31P(n,α)28Al. The detection limits which were attained for these reactions utilizing this system were: 54.8 µg for 16O, 0.23 and 0.19 µg for 19F, 1.8 and 8.0µg for 23Na, 150 µg for 34S, and 2.6 µg for 31P. Most of these limits are an order of magnitude or more lower than those reported by users of the Cockroft-Walton neutron generators usually employed for these analyses.