ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Blades-in turbine inspections at Quad Cities set new benchmark for Constellation
When Constellation decided to install replacement Alstom low-pressure turbines at three of its boiling water reactor plants more than 15 years ago, one benefit was knowing the new turbines should operate reliably—and without major inspections—for several years.
Young Min Kwon, Chan Eok Park, Jin Ho Song
Nuclear Technology | Volume 122 | Number 3 | June 1998 | Pages 295-305
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT98-A2871
Articles are hosted by Taylor and Francis Online.
To investigate the realistic behavior of mass and energy release and resultant containment response during a large-break loss-of-coolant accident (LOCA), analyses are performed on the Yonggwang (YGN) 3&4 nuclear power plants using the RELAP5/CONTEMPT4 computer code. Comparative analyses using conservative design computer codes are also performed. The break types analyzed are the double-ended guillotine breaks at the cold leg and hot leg. The design analysis predicts that the containment peak pressure occurs during the postblowdown phase for the cold-leg break. However, RELAP5/CONTEMPT4 analyses show that the containment pressure has a peak during the blowdown phase, thereafter it decreases monotonously without the postblowdown peak. For the hot-leg break, revised design analysis shows a much lower pressure than that reported in the YGN 3&4 final safety analysis report. The RELAP5/CONTEMPT4 analysis shows a similar trend and confirms that the bypass flow through the broken loop steam generator during postblowdown is negligibly small compared to that of the cold-leg break. In conclusion, realistic analysis by RELAP5/CONTEMPT4 demonstrates that the containment peak pressure occurs during the blowdown phase for both cold- and hot-leg large-break LOCAs, and there is no physical mechanism resulting in mass and energy discharge that can pressurize the containment after end of blowdown for a hot-leg break. Also, it is suggested that the substantial conservatism included in the design analysis should be improved to provide benefits in relaxing the plant technical specifications and reducing the containment design pressure.