ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Young Min Kwon, Chan Eok Park, Jin Ho Song
Nuclear Technology | Volume 122 | Number 3 | June 1998 | Pages 295-305
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT98-A2871
Articles are hosted by Taylor and Francis Online.
To investigate the realistic behavior of mass and energy release and resultant containment response during a large-break loss-of-coolant accident (LOCA), analyses are performed on the Yonggwang (YGN) 3&4 nuclear power plants using the RELAP5/CONTEMPT4 computer code. Comparative analyses using conservative design computer codes are also performed. The break types analyzed are the double-ended guillotine breaks at the cold leg and hot leg. The design analysis predicts that the containment peak pressure occurs during the postblowdown phase for the cold-leg break. However, RELAP5/CONTEMPT4 analyses show that the containment pressure has a peak during the blowdown phase, thereafter it decreases monotonously without the postblowdown peak. For the hot-leg break, revised design analysis shows a much lower pressure than that reported in the YGN 3&4 final safety analysis report. The RELAP5/CONTEMPT4 analysis shows a similar trend and confirms that the bypass flow through the broken loop steam generator during postblowdown is negligibly small compared to that of the cold-leg break. In conclusion, realistic analysis by RELAP5/CONTEMPT4 demonstrates that the containment peak pressure occurs during the blowdown phase for both cold- and hot-leg large-break LOCAs, and there is no physical mechanism resulting in mass and energy discharge that can pressurize the containment after end of blowdown for a hot-leg break. Also, it is suggested that the substantial conservatism included in the design analysis should be improved to provide benefits in relaxing the plant technical specifications and reducing the containment design pressure.