ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Sin Kim, Goon Cherl Park
Nuclear Technology | Volume 122 | Number 3 | June 1998 | Pages 284-294
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT98-A2870
Articles are hosted by Taylor and Francis Online.
A thermal-hydraulic field analysis code using the finite element method is developed to analyze the effects of anisotropic turbulent diffusion and secondary flow on turbulent mixing, which is essential to the nuclear fuel performance analysis.In this study a new model of anisotropic eddy viscosity is developed. The representative value of the anisotropic factor is determined from the scale relation that is derived on the basis of the flow pulsation phenomenon. The spatial distribution is deduced qualitatively from well-known experiments. The flow fields calculated by this code are compared with experimental data and show good agreements, and the predicted turbulent mixing rates are successfully compared with the scale relation derived in the authors' previous work.The results show that the isotropic eddy viscosity model underestimates the mixing rate and gives the reverse trend as the gap size reduces, and the secondary flow has a minor effect compared with the anisotropic eddy viscosity in the turbulent mixing process. Although the mixing phenomenon of the flow pulsation is a convective process, it can be simulated only by the anisotropic model.