ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
World Bank, IAEA partner to fund nuclear energy
The World Bank and the International Atomic Energy Agency signed an agreement last week to cooperate on the construction and financing of advanced nuclear projects in developing countries, marking the first partnership since the bank ended its ban on funding for nuclear energy projects.
Ingvar Matsson, Björn Grapengiesser, Peter Jansson, Ane Håkansson, Anders Bäcklin
Nuclear Technology | Volume 122 | Number 3 | June 1998 | Pages 276-283
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT98-A2869
Articles are hosted by Taylor and Francis Online.
Poolside measurements of fission gas release (FGR) in fuel pins have been made using gamma-ray spectroscopy with a Ge detector, measuring 85Kr activity in the fuel rod plenum. The gamma-ray energy spectra from irradiated nuclear fuel are characterized by prominent Compton distributions that can obscure the weak 514-keV 85Kr peak. To improve the sensitivity, the detector has been provided with an anti-Compton shield of six Bi3Ge4O12 detectors. Laboratory tests of the detector system showed that the maximum peak-to-Compton (p/c) ratio was improved by a factor of ~6. The results of the poolside measurement p/c ratio showed a somewhat smaller improvement (a factor of ~4) because of scattered gamma radiation from the surrounding material. However, the precision in the poolside FGR measurements was improved substantially utilizing the Compton shield.