ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
F. T. Osborne, S. Omi, V. T. Stannett, E. P. Stahel
Nuclear Technology | Volume 8 | Number 5 | May 1970 | Pages 445-449
Paper | Radioisotopes | doi.org/10.13182/NT70-A28689
Articles are hosted by Taylor and Francis Online.
A small-scale semicontinuous pilot plant for studying chemical reactions carried out in remote environments is described. The all-stainless system features modular construction enabling rapid exchange of various elements. The equipment design permits purification, sampling, and other manipulative tasks to be performed in a “safe” operating area. Dissolved gases and moisture are removed from the reactant mass prior to circulation in the primary reaction loop. In this particular application, moisture is removed by low-temperature adsorption on molecular sieves. Progress of the drying is monitored continuously by a commercially available instrument in which moisture passes through a semi-permeable foil to a capacitance element. The rate of reaction in the remote reaction zone is reflected continuously in the time rate of change of conversion as measured by in situ differential refractometry. Utilization of this system has permitted accurate measurement of the rate of 60Co radiation-induced polymerization under super-dry conditions.