ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Thomas J. Marciniak
Nuclear Technology | Volume 8 | Number 5 | May 1970 | Pages 401-416
Paper | Reactor | doi.org/10.13182/NT70-A28685
Articles are hosted by Taylor and Francis Online.
A simple, stable, time-optimal digital control program has been developed with general application to zero- or low-power nuclear reactors for power-level changes, especially power increases. The program is required to increase the power level while maintaining a minimum allowed period, and to reach the demand power with little or no overshoot. A switching criterion was derived using a discrete version of the Pontryagin Maximum Principle. The switch point was found to be dependent upon the minimum allowed period and the maximum reactivity removal rate of the controlled regulating rod. The control program developed was applied to digital simulation of three reactor models and was adapted for use on the Argonne Thermal Source Reactor (ATSR) for power-level changes. The maximum overshoot experienced was ∼1% for various minimum allowed reactor periods and reactivity removal rates.