ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Christmas Light
’Twas the night before Christmas when all through the house
No electrons were flowing through even my mouse.
All devices were plugged by the chimney with care
With the hope that St. Nikola Tesla would share.
Thomas J. Marciniak
Nuclear Technology | Volume 8 | Number 5 | May 1970 | Pages 401-416
Paper | Reactor | doi.org/10.13182/NT70-A28685
Articles are hosted by Taylor and Francis Online.
A simple, stable, time-optimal digital control program has been developed with general application to zero- or low-power nuclear reactors for power-level changes, especially power increases. The program is required to increase the power level while maintaining a minimum allowed period, and to reach the demand power with little or no overshoot. A switching criterion was derived using a discrete version of the Pontryagin Maximum Principle. The switch point was found to be dependent upon the minimum allowed period and the maximum reactivity removal rate of the controlled regulating rod. The control program developed was applied to digital simulation of three reactor models and was adapted for use on the Argonne Thermal Source Reactor (ATSR) for power-level changes. The maximum overshoot experienced was ∼1% for various minimum allowed reactor periods and reactivity removal rates.