ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
Thomas J. Marciniak
Nuclear Technology | Volume 8 | Number 5 | May 1970 | Pages 401-416
Paper | Reactor | doi.org/10.13182/NT70-A28685
Articles are hosted by Taylor and Francis Online.
A simple, stable, time-optimal digital control program has been developed with general application to zero- or low-power nuclear reactors for power-level changes, especially power increases. The program is required to increase the power level while maintaining a minimum allowed period, and to reach the demand power with little or no overshoot. A switching criterion was derived using a discrete version of the Pontryagin Maximum Principle. The switch point was found to be dependent upon the minimum allowed period and the maximum reactivity removal rate of the controlled regulating rod. The control program developed was applied to digital simulation of three reactor models and was adapted for use on the Argonne Thermal Source Reactor (ATSR) for power-level changes. The maximum overshoot experienced was ∼1% for various minimum allowed reactor periods and reactivity removal rates.