ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
World Bank, IAEA partner to fund nuclear energy
The World Bank and the International Atomic Energy Agency signed an agreement last week to cooperate on the construction and financing of advanced nuclear projects in developing countries, marking the first partnership since the bank ended its ban on funding for nuclear energy projects.
H. O. Schad, A. A. Bishop
Nuclear Technology | Volume 8 | Number 3 | March 1970 | Pages 261-275
Paper | Fuel | doi.org/10.13182/NT70-A28673
Articles are hosted by Taylor and Francis Online.
Experiments were conducted to determine the behavior of stationary gas bubbles in narrow liquid-filled gaps. The work was carried out to help answer the question of how fission gas bubbles may behave in the sodium bond of oxide and carbide fueled rods. The hydraulic data obtained with uncracked pellets indicate that stagnant bubbles may exist even when the simulated fuel rod was vibrated. These stagnant bubbles are large enough to cause calculated hot spots in the bond. The location under an overhanging ledge formed by axial eccentric pellets was a common place for bubbles to stagnate. Possible differences between the actual fuel-rod behavior in the reactor and the test conditions may be caused by heating effects which influence bubble motion, cracked pellets which prevent accumulation of fission gas in the bonding, and the release of significant amounts of fission gas only when the reactor is shut down. Equations are presented for the maximum bubble size, and the length and width of bubbles stagnated at the lips (overhang) of fuel pellets.