ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Marko Maucec, Matjaz Ravnik, Bogdan Glumac
Nuclear Technology | Volume 122 | Number 3 | June 1998 | Pages 255-264
Technical Paper | Reactor Safety | doi.org/10.13182/NT98-A2867
Articles are hosted by Taylor and Francis Online.
A criticality safety study of various forms of multiplying medium based on RBMK-1000 fuel elements is presented. The calculations were performed with the Los Alamos National Laboratory Monte Carlo MCNP4B code. Continuous energy cross-section data have been taken from the ENDF/B-VI and ENDF/B-V libraries and S(,) scattering functions from the ENDF/B-IV library. A detailed three-dimensional model of the RBMK fuel element has been developed. A set of parametric calculations was performed for some hypothetical fuel conditions with the infinite model of storage lattice. Multiplying properties of homogenized mixture of fuel and moderator were also analyzed. Certain combinations of moderator (graphite-water mixture) and fuel may yield a significantly increased multiplication factor with respect to normal reactor lattice conditions. MCNP calculations were performed for fresh fuel conditions. The reduction of the multiplication factor due to burnup up to 20 GWd/TU was estimated using the WIMS/D-5 code for lattice-cell conditions. It was observed that the multiplication factor (kinf or keff) does not exceed unity if the burnup is taken into account regardless of the assumptions on the fuel conditions.