ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Marko Maucec, Matjaz Ravnik, Bogdan Glumac
Nuclear Technology | Volume 122 | Number 3 | June 1998 | Pages 255-264
Technical Paper | Reactor Safety | doi.org/10.13182/NT98-A2867
Articles are hosted by Taylor and Francis Online.
A criticality safety study of various forms of multiplying medium based on RBMK-1000 fuel elements is presented. The calculations were performed with the Los Alamos National Laboratory Monte Carlo MCNP4B code. Continuous energy cross-section data have been taken from the ENDF/B-VI and ENDF/B-V libraries and S(,) scattering functions from the ENDF/B-IV library. A detailed three-dimensional model of the RBMK fuel element has been developed. A set of parametric calculations was performed for some hypothetical fuel conditions with the infinite model of storage lattice. Multiplying properties of homogenized mixture of fuel and moderator were also analyzed. Certain combinations of moderator (graphite-water mixture) and fuel may yield a significantly increased multiplication factor with respect to normal reactor lattice conditions. MCNP calculations were performed for fresh fuel conditions. The reduction of the multiplication factor due to burnup up to 20 GWd/TU was estimated using the WIMS/D-5 code for lattice-cell conditions. It was observed that the multiplication factor (kinf or keff) does not exceed unity if the burnup is taken into account regardless of the assumptions on the fuel conditions.