ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE on track to deliver high-burnup SNF to Idaho by 2027
The Department of Energy said it anticipated delivering a research cask of high-burnup spent nuclear fuel from Dominion Energy’s North Anna nuclear power plant in Virginia to Idaho National Laboratory by fall 2027. The planned shipment is part of the High Burnup Dry Storage Research Project being conducted by the DOE with the Electric Power Research Institute.
As preparations continue, the DOE said it is working closely with federal agencies as well as tribal and state governments along potential transportation routes to ensure safety, transparency, and readiness every step of the way.
Watch the DOE’s latest video outlining the project here.
D. L. Dunaway, G. P. Miller, W. A. Johnson
Nuclear Technology | Volume 8 | Number 6 | June 1970 | Pages 482-487
Fuel Cycle | doi.org/10.13182/NT70-A28647
Articles are hosted by Taylor and Francis Online.
A study was initiated to determine the highest 235U enrichment that could be processed safely in a facility originally designed for refining natural uranium ores and concentrates. The equipment used in converting uranyl nitrate to uranium trioxide was determined to be the limiting factor. Calculations of neutron multiplication throughout the denitration cycle were made using data from the analysis of process material. It was determined that the maximum 235U enrichment could be safely increased to 2.0% from the previous limit of 1.25% 235U. Processing at the higher enrichment required slight changes in equipment to ensure against moderation of the material.